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Abstract

Predicting future human behavior from egocentric

videos is a challenging but critical task for human intention

understanding. Existing methods for forecasting 2D hand

positions rely on visual representations and mainly focus

on hand-object interactions. In this paper, we investigate

the hand forecasting task and tackle two significant issues

that persist in the existing methods: (1) 2D hand positions

in future frames are severely affected by ego-motions in ego-

centric videos; (2) prediction based on visual information

tends to overfit to background or scene textures, posing a

challenge for generalization on novel scenes or human be-

haviors. To solve the aforementioned problems, we propose

EMAG, an ego-motion-aware and generalizable 2D hand

forecasting method. In response to the first problem, we

propose a method that considers ego-motion, represented

by a sequence of homography matrices of two consecu-

tive frames. We further leverage modalities such as opti-

cal flow, trajectories of hands and interacting objects, and

ego-motions, thereby alleviating the second issue. Extensive

experiments on two large-scale egocentric video datasets,

Ego4D and EPIC-Kitchens 55, verify the effectiveness of

the proposed method. In particular, our model outperforms

prior methods by 1.7% and 7.0% on intra and cross-dataset

evaluations, respectively. The code and preprocessed data

will be made available.

1. Introduction
With the emergence of wearable devices such as smart
glasses and intelligent helmets, there has been growing
interest in the analysis of egocentric videos. In recent
years, large-scale egocentric vision datasets such as EPIC-
Kichtens [8, 9] and Ego4D [16] have been introduced to cat-
alyze the next era of research in first-person perception and
provide a diverse range of tasks for investigation, including
action recognition [15, 36, 53], human body pose estima-
tion [26, 51, 52], audio-visual understanding [21, 41], ac-
tion anticipation [14, 38], and natural language queries [40].

Future forecasting is one of the major categories, in-

Camera motion (ego-motion) !

Figure 1. The presence of ego-motion in first-person videos sig-
nificantly affects the dynamic movement of the camera position.
Since the camera is part of the wearer’s body, a variety of views
can be captured even in a short period of time.

cluding the anticipation of the camera wearer’s future ac-
tions and the prediction of human movements. This capa-
bility has immediate applications in AR/VR [56, 57] and
human-robot interactions [39, 55] as both fields benefit from
understanding the camera wearer’s actions or behaviors.
Among the tasks in future forecasting, hand forecasting has
been recognized as particularly challenging due to severe
ego-motion, which affects the 2D hand positions in future
frames.

Recent 2D egocentric hand forecasting approaches [16,
29, 31] leverage visual feature representations extracted
from input RGB videos using 2D or 3D Convolutional Neu-
ral Networks (CNNs) for the hand forecasting task. For
example, the method proposed in the Ego4D dataset [16]
uses a simple I3D network [5] and regresses the future 2D
hand coordinates. Meanwhile, the Object Centric Trans-
former (OCT) [31] is a method that jointly predicts hand
motions and object contact points from RGB video fea-
tures extracted with BNInception [48] and the hand/object
bounding boxes.

Although the 2D hand forecasting task has been widely
studied, two critical issues still remain in the previous
works: the accuracy and generalization performance against
unseen data, both of which are crucial for practical scenar-
ios. First, the 2D hand position in future frames is heavily



influenced by the head motion of the camera wearer, also
known as ego-motion. As illustrated in Fig. 1, body and
head motions cause frequent view changes even in a short
period of time, yet the previous approaches have not ex-
plicitly considered ego-motion for predicting 2D hand po-
sitions. Second, the performance of RGB-based prediction
approaches significantly drops when the video feature dis-
tribution (i.e. domain) diverges from that of the training
set [25, 54]. This performance drop is crucial for the 2D
egocentric hand forecasting task since the camera is not sit-
uated at a fixed location. For instance, performance may
vary if the egocentric videos are captured in different tex-
tured environments (e.g., outdoor vs. indoor), or if the
wearer performs different actions from the training.

This work proposes EMAG, an ego-motion-aware and
generalizable 2D hand forecasting method. This approach
capitalizes on the incorporation of ego-motion information
to enhance the accuracy of the hand forecasting task. Addi-
tionally, we employ multiple modalities to mitigate suscep-
tibility to overfitting in backgrounds or scene textures. We
aim to achieve more robust predictions in settings where
camera wearers engage in a diverse range of tasks such as
cooking and gardening.

To address the first challenge, we propose leveraging a
sequence of homography matrices as ego-motion and antic-
ipating them on future frames. Given that hand positions in
future frames are affected by future ego-motion, explicitly
forecasting ego-motion as an auxiliary task enhances the ac-
curacy of predicting future hand positions, particularly in
egocentric videos where head motions occur frequently.

To alleviate the second issue, instead of primarily re-
lying on visual features for estimating 2D hand positions,
we leverage modalities such as optical flow, hand/object
positions, and ego-motion information, using hand mo-
tions as the primary features for hand forecasting. This
approach reduces reliance on appearance-based features,
as these modalities are free from appearance-based bi-
ases [36]. Consequently, the model’s generalizability is en-
hanced, ensuring robust performance even when distribu-
tion gaps exist between the training and test data.

We extensively evaluate the proposed method on two
large-scale egocentric datasets, Ego4D [16] and EPIC-
Kitchens 55 [8]. The performance of the proposed method,
along with that of previous state-of-the-art forecasting ap-
proaches, is assessed under two settings: the intra-dataset
setting and the cross-dataset setting. In the cross-dataset set-
ting, the model is evaluated on a different dataset from train-
ing to verify the generalization performance against unseen
scenes or actions. As a result, our method outperforms the
previous approaches in both two settings (1.7% and 7.0%
improvement with intra-dataset and cross-dataset settings,
respectively). Moreover, we conduct various ablation stud-
ies on the proposed input modalities and loss components.

In summary, our contributions are as follows:
• We are the first to investigate the potential benefits of in-

corporating ego-motion, which is critical in the 2D hand
forecasting task.

• We propose a simple but effective approach, EMAG, that
considers ego-motion, represented by a sequence of ho-
mography matrices of two consecutive frames. In addi-
tion, our method utilizes multiple modalities to mitigate
overfitting to scene textures.

• We conduct extensive experiments on two large-scale
egocentric datasets, Ego4D and EPIC-Kitchens 55. The
experimental results verify the outperformance of the pro-
posed method over the previous approaches through two
different experimental setups: intra-dataset and cross-
dataset. Especially, the method shows strong perfor-
mance with cross-dataset in which the training and test
datasets differ.

2. Related Work
2.1. Egocentric Video Understanding
Video understanding is one of the central tasks in the com-
puter vision field. Various video understanding methods are
well-established thanks to large-scale datasets [17, 24, 45]
collected from internet sources (e.g. YouTube). The videos
in these large-scale datasets are mostly captured from an ex-
ocentric camera (third-view video), such as a surveillance or
a hand-held camera.

On the other hand, analyzing egocentric video (first-view
video) captured by wearable cameras has become an active
area of research in recent years [7, 27, 30, 35, 37, 58]. Com-
pared with exocentric videos, egocentric videos provide dis-
tinct viewpoints of surrounding scenes and actions driven
by the camera position holding on the observer. Therefore,
egocentric video analysis can be helpful for various appli-
cations, such as AR/VR [56, 57] or medical image analy-
sis [4, 12].

Multiple large-scale egocentric video datasets [8, 9, 16,
28, 32] have been proposed in response to the demand for
egocentric video analysis. These datasets have played a
pivotal role in advancing research on egocentric video un-
derstanding, encompassing tasks such as activity recogni-
tion [15, 36, 53], human-object interaction [29, 31, 59],
action anticipation [14, 38], human body pose estima-
tion [26, 51, 52], and audio-visual understanding [21, 41].
In this work, we explore one of the challenging tasks in ego-
centric video analysis, 2D hand forecasting.

2.2. Hand Forecasting from Egocentric Videos
To predict future hand positions, traditional tracking or se-
quential methods, such as Kalman Filter (KF) [23], Con-
stant Velocity Model (CVM) [43], and Seq2Seq [47], have
been commonly employed for trajectory prediction. These
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Figure 2. The architecture of the proposed method. Given input egocentric video frames, we pre-process them and obtain multiple
modalities, including RGB and optical flow, detected bounding boxes of objects/hands, and homography matrices of adjacent frames. We
train a single Transformer encoder and two Transformer decoders with MLP heads for hand and ego-motion prediction.

methods often rely solely on trajectories of hand positions
and do not effectively leverage the context of scenes without
visual information, resulting in suboptimal performance. To
effectively leverage visual information, the baseline method
for hand forecasting, which was proposed as a benchmark
along with the Ego4D [16] dataset, utilized I3D [5], a
method that is known for its outstanding performance to ex-
tract spatial and temporal information.

Moreover, several studies have focused on hand-object
interactions to explore the relationship between meaning-
ful human body movements and future representations.
FHOI [29] is the first work to incorporate the future trajec-
tory of hands for action anticipation in egocentric videos.
Building upon this, OCT [31] is an approach that integrates
hand-object interactions into the prediction process.

However, neither of these approaches explicitly consid-
ers ego-motion, which plays a crucial role in accurately pre-
dicting future hand positions in 2D image coordinates, as
future hand positions are heavily influenced by future ego-
motion. In contrast to previous works, we explore the po-
tential benefits of integrating ego-motion information to en-
hance the capability of predicting future hand positions even
in the presence of severe ego-motion.

3. Method
The proposed architecture is built upon the original Trans-
former [50]. It inputs multiple modalities and predicts fu-
ture hand positions and ego-motions. We first introduce the

egocentric 2D hand forecasting task (Sec. 3.1). Then, we
introduce our proposed method, including pre-processing
(Sec. 3.2), an encoder (Sec. 3.3), our hand position and
ego-motion predictors (Sec. 3.4), and our training objective
(Sec. 3.5). Fig. 2 provides an overview of our approach.

3.1. Problem Definition

The task is to predict future hand positions of the camera
wearer in 2D image coordinates on future frames, followed
by the definition on Ego4D [16]. Given an input egocentric
video V = {I1, . . . , IT } with an observation time length T ,
where IT represents the last observation frame. Our goal is
to predict future hand coordinates h = {hT+1, . . . ,hT+F }
for the future time horizons F . At each time step t, ht con-
sists of left/right-hand positions in the 2D image coordinate
system on the frame It.

3.2. Pre-processing

Our proposed method inputs three types of input modalities:
trajectory information, global information, and ego-motion
information. We pre-process an input video to obtain these
three modalities as follows.
Trajectory information. Trajectory information consists
of the sequential 2D positions of the bounding boxes of
hands and objects. To obtain bounding boxes for both hands
and objects for each frame, we apply an egocentric hand-
object detector [44], which detects the left and right hand
and objects separately. We use the following bounding



boxes: left hand, right hand, and objects detected with a
top-k confidence score.
Global information. Global information consists of RGB
frames and optical flow. The optical flow can be estimated
from two consecutive RGB frames via an off-the-shelf opti-
cal flow estimator, such as RAFT [49] or FlowFormer [22].
Ego-motion information. The ego-motion is represented
by a sequence of homography matrices, which encapsu-
late the transformation between consecutive frames. Gen-
erally, a homography between images taken from two dis-
tinct viewpoints depends on the intricate 3D arrangement of
the captured scene. Nonetheless, given the relatively small
magnitude of the translation vector connecting consecutive
frames in the context of first-person videos, a homography
does not depend on the 3D structure of the scene but solely
on the rotation between the two viewpoints.

The process of estimating the homography matrix in-
volves two key stages: the identification of matching points
between frames and the determination of a homography ma-
trix that minimizes the error. The initial step entails identi-
fying matching points, a task facilitated by using previously
estimated optical flow, which characterizes the pixel dis-
placement between frames. For the second step, we apply
the RANSAC algorithm [11], which is known as a robust it-
erative algorithm, to estimate the homography parameters.

3.3. Encoder

Tokenization. After pre-processing all input modalities,
each modality is transformed into a token to be encoded
in a single Transformer encoder. For each detected bound-
ing box (top-left and bottom-right coordinates) at time step
t, it is transformed into a token xt

i by a shared linear layer,
which maps R4 ! RC , where i represents either of the
left hand, right hand, or objects detected with a top-k con-
fidence score, and C denotes the dimension size of each
token. As for the global information, we use two 2D CNNs
to extract the features of each RGB and flow frame and then
pool the extracted features in the spatial direction by global
average pooling (GAP). The pooled features are denoted as
xt

rgb and xt
flow. Similar to the trajectory information, each

homography matrix is transformed into a token xt
ego by a

linear layer, which maps R9 ! RC . The 3⇥3 homography
matrix is flattened before passing through the linear layer.
Index encoding. As there are various tokens in terms of
modality type and time, two index encodings, the modal in-
dex embedding and time index embedding, are employed.
The learnable position embedding is employed for the
modal index embedding. Also, we adopt the time index en-
coding, which replaces the position in the original sinusoid
positional encoding [50] with a time index (frame number).
Transformer encoder. We use a single Transformer en-
coder E to encode multiple input modalities across multiple

time steps via self-attention mechanisms:

z1
m1

, z1
m2

, . . . , zT
mM

= E(x1
m1

,x1
m2

, . . . ,xT
mM

), (1)

where xt
mj

is the token of the mj-th modality at the time
step t, M denotes the number of input modality types, and
zt
mj

is the output token from the Transformer encoder E .

3.4. Hand Position and Ego-motion Predictors
We use two Transformer decoders, the hand decoder (Dhand)
and the ego-motion decoder (Dego), conditioned on the fea-
tures from the encoder in an autoregressive manner. Finally,
the decoded feature for each future time step is fed into two
MLP heads, Mhand and Mego, to predict the hand position
and ego-motion for each time step.
Transformer decoder. For the hand Transformer decoder,
the encoded left-hand token and the right-hand token of the
last observation time T , zT

left and zT
right, are used as the key

and the value, and a learnable parameter is used as a hand
learnable token phand for the query of the first forecasting
time step (qT

hand = phand):

qT+f
hand = Dhand(q

T
hand, . . . , q

T+f�1
hand ), (2)

where qT+f
hand represents the decoded tokens for the future

time step T + f, f = {1, . . . , F}. We perform the same
operation for the ego-motion Transformer decoder. The dif-
ference is the key, value, and query. The key and value stem
from the encoded ego-motion features at the last observed
time step T , zT

ego, and the query is a learnable parameter for
ego-motion pego (= qT

ego):

qT+f
ego = Dego(q

T
ego, . . . , q

T+f�1
ego ). (3)

MLP head. We use multi-layer perceptrons (MLP), which
take the decoded features from the Transformer decoder at
each future time step for both hand position and ego-motion
prediction. Mhand predicts the coordinates of the left and
right hands ĥT+f at the future time step T + f . Similarly,
Mego predicts the nine elements of the homography matrix
êT+f :

ĥT+f = Mhand(q
T+f
hand ), (4)

êT+f = Mego(q
T+f
ego ). (5)

Note that the weights of each MLP head (Mhand and Mego)
are shared for each time step.

3.5. Training Objective
In our training process, we use two types of losses: the hand
forecasting loss Lhand and the ego-motion (nine elements of
the homography matrix) estimation loss Lego.
Hand forecasting loss. We adopt the self-adjusting smooth
L1 loss, which was introduced in RetinaMask [13], as the



objective function for hand forecasting:

li =

(
0.5wi(hi � ĥi)2/�, |hi � ĥi| < �

wi(|hi � ĥi|� 0.5�), otherwise
(6)

Lhand =
1

4F

X

i

li, (7)

where hi is a i-th element of a vector representing the x, y
ground truth coordinates of the left/right hands on F future
frames h 2 R4F , ĥ denotes predicted future hand coordi-
nates, and � is a control point that mitigates over-penalizing
outliers. If the hand is not observed in future frames, we pad
0 into the ĥ and adopt a binary mask w 2 R4F to prevent
gradient propagation for these unobserved instances.
Ego-motion estimation loss. We employ the L2 loss for
ego-motion estimation loss:

Lego =
1

9F

X

i

(ei � êi)
2, (8)

where e 2 R9F is a vector representing the elements of
homography matrices on F future frames. Lhand and Lego
are linearly combined with a balancing hyperparameter ↵
for the final training loss:

Ltotal = Lhand + ↵Lego. (9)

4. Experimetns
4.1. Datasets
EPIC-Kitchens 55 [8]. EPIC-Kitchens 55 is the dataset
that only includes the daily activities videos in the kitchen.
It comprises a set of 432 egocentric videos recorded by 32
participants in their kitchens using a head-mounted camera.
We use the train/val split provided by RULSTM [14].
Ego4D [16]. The Ego4D dataset is the most recent large-
scale egocentric video dataset. It contains 3,670 hours
of egocentric videos of people performing diverse tasks,
such as farming or cooking, and is collected by 931 peo-
ple from 74 locations across nine different countries world-
wide. We follow the same train/val split protocol provided
by Ego4D [16].

Followed by the previous work [31], we employ the ego-
centric hand-object detector [44] with the same setup as
the previous work and consider the center of detected hand
bounding boxes as the ground truth hand positions for both
left and right hands.

4.2. Implementation Details
Experimental setup. We sample T = 8 frames at 4 FPS
(frames per second) as input observations and forecast 1
second with the future time step F = 4 on both EPIC-
Kitchens 55 and Ego4D. We use the pre-trained ResNet-
18 [19] on ImageNet [10] as the backbone to extract RGB

and optical flow features. We adopt the hand and object
detector from the egocentric video [44] to detect left/right
hand and object bounding boxes in each input frame, and
FlowFormer [22] is used to estimate the optical flow be-
tween consecutive frames. We standardize RGB, optical
flow, and ego-motion inputs using means and standard de-
viations of input modalities on the training dataset. Note
that the estimated homography matrices are normalized so
that the element in the third row and the third column is one
before standardization.
Network architecture. We use the dimension size of a to-
ken C = 512, k = 2 for the top-k confidence score with the
threshold of 0.5, and set the number of blocks in the encoder
and decoder to 2. Each block has 8 attention heads in the
encoder and decoder. Our MLPs for hand and ego-motion
prediction consist of a linear layer, an activation function of
ReLU [1], a Dropout [46] layer, and a final linear layer that
outputs the hand positions and ego-motion at future frames.
Optimization. We train the model for 30 epochs using the
AdamW optimizer [34], with a peak learning rate of 2e �
4, linearly increased for the first 5 epochs of the training
and decreased to 0.0 until the end of training with cosine
decay [33]. We use weight decay of 1e� 3 and a batch size
of 64. Regarding the parameters for the loss function, we
empirically adapt the control point � = 5.0 in Eq. (6), and
the loss weight of ↵, used in Eq. (9), is set to 1.

4.3. Evaluation Metrics
The distance between the predicted and ground truth posi-
tions in 2D image space, measured in pixels, is used to eval-
uate future hand position prediction performance. Specif-
ically, we adopt traditional metrics of trajectory predic-
tion [2, 6, 18]: average displacement error and final dis-
placement error. Note that the metric is calculated using an
image height scale of 256 px.
Average Displacement Error (ADE). ADE is calculated as
the l2 distance between the predicted future hand positions
and the ground truth positions in pixel averaged over the
entire future time steps and both left and right hands.
Final Displacement Error (FDE). FDE measures the l2
distance between the predicted future hand positions and
ground truth positions at the last time step and is averaged
over two hands.

4.4. Comparison Methods
We compare with the following methods:
• CVM [43]. The Constant Velocity Model (CVM) is a

simple but effective trajectory prediction method based
on the assumption that the most recent relative motion is
the most relevant predictor for the future trajectory. We
compute the velocity (vx, vy) between t = T � 1 and t =
T for each hand (right, left), and future hand positions for
t = {T + 1, ..., T + F} are forecasted using (vx, vy).



Table 1. Intra-dataset evaluation. We assess the performance of future hand forecasting on two large-scale egocentric datasets, Ego4D
and EPIC-Kitchens 55. In terms of input modalities, the symbols Th, To, Gr, Gf , E represents trajectory information of hands and objects,
global information of RGB and optical flow, and ego-motion information, respectively. Note that no backbone is used in CVM, KF, and
Seq2Seq as these methods predict based on past trajectories and do not input RGB or optical flow frames. The best values are shown in
bold, and the second best values are shown with underline.

Method Input Modality Backbone Ego4D EPIC-Kitchens 55

ADE # FDE # ADE # FDE #

CVM [43] Th - 108.11 143.23 141.70 155.40
KF [23] Th - 71.23 72.87 70.58 75.60
Seq2Seq [47] Th - 55.91 60.72 62.24 67.85
OCT [31] Th, To, Gr BN-Inception 49.40 54.73 53.85 59.06
I3D + Regression [16] Gr 3D ResNet-50 49.27 53.04 49.64 54.83
Ours Th, To, Gr, Gf , E 2D ResNet-18 48.99 52.83 48.78 54.03

• KF [23]. The Kalman Filter is an algorithm for estimating
a dynamic system’s state based on noisy measurements. It
tracks the center of the bounding boxes of the hands with
its scale and aspect ratio. Our implementation is based on
the code provided by SORT [3]1, which adopts a Kalman
Filter to track the center of bounding boxes.

• Seq2Seq [47]. Seq2Seq employs Long Short-Term Mem-
ory (LSTM) [20] to encode temporal information in the
observation sequence and decode the target location of
the hands. In our implementation, we adopt the embed-
ding size of 512, the hidden dimension of 256, and the
teacher forcing ratio of 0.5 during training.

• OCT [31]. OCT simultaneously predicts contact points
and the hand trajectory. It takes RGB features extracted
by BNInception [48], bounding boxes of hands and ob-
jects, and their cropped visual features as input. We mod-
ified the model not to predict the contact point for a fair
comparison. Our implementation of this model is based
on the official implementation2.

• I3D + Regression [16]. This method is proposed as a
benchmark for hand forecasting in the Ego4D dataset.
The model is trained with the official hand forecasting
code3.
The first two traditional approaches predict based only

on past trajectories without training. On the other hand,
the last three methods above are recent advanced learning-
based approaches in the hand forecasting task.

4.5. Hand Forecasting Accuracy Comparison
Intra-dataset evaluation. We compare the performance
of hand forecasting with the prior methods on two large-
scale egocentric datasets. Tab. 1 shows that the proposed
method consistently outperforms the state-of-the-art meth-

1
https://github.com/abewley/sort

2
https://github.com/stevenlsw/hoi-forecast

3
https://github.com/EGO4D/forecasting

Table 2. Cross-dataset evaluation. A ! B in the first row in-
dicates that the models are trained on the training set of dataset
A and tested on the validation set of dataset B. We conduct two
cross-dataset evaluations: (1) trained on EPIC-Kitchens 55 and
evaluated on Ego4D and (2) trained on Ego4D and evaluated on
EPIC-Kitchens 55.

Method EPIC ! Ego4D Ego4D ! EPIC

ADE # FDE # ADE # FDE #

CVM [43] 108.11 143.23 141.70 155.40
KF [23] 71.23 72.87 70.58 75.60
Seq2Seq [47] 62.43 67.85 67.97 72.26
OCT [31] 57.74 59.10 64.97 65.84
I3D + Regression [16] 59.72 61.72 51.70 58.37
Ours 53.67 56.36 51.03 56.78

ods. Our proposed method surpasses OCT by 9.4% (from
53.85 to 48.78) and I3D + Regression by 1.7% (from 49.64
to 48.78) on the EPIC-Kitchens 55 dataset. On the Ego4D
dataset, our method exhibits similar performance on EPIC-
Kitchens 55 and outperforms the prior works. Furthermore,
the poor performance of the constant velocity model [43],
which outperforms the learning-based approaches [18, 42]
for pedestrian trajectory prediction from exocentric videos,
confirms that the 2D hand forecasting task from egocentric
videos presents unique challenges due to ego-motion.
Cross-dataset evaluation. We compare the generalization
performance for future hand forecasting with the state-of-
the-art methods in the cross-dataset scenario, where the do-
main of the test data is different from the training dataset.
Tab. 2 summarizes the generalization performance of the
comparison methods and the proposed method. Our pro-
posed method surpasses OCT by 7.0% on the Ego4D



Table 3. Action category-level evaluation. We compare the hand forecasting performance in the cross-dataset scenarios at the action
category level with the conventional learning-based approaches. The results of five action categories, such as cooking, mechanic, arts/crafts,
building, and gardening/farming, are summarized in the table.

Method
Cooking Mechanic Arts and crafts Building Gardening and farming

ADE # FDE # ADE # FDE # ADE # FDE # ADE # FDE # ADE # FDE #

Seq2Seq [47] 58.45 60.73 59.78 62.83 64.60 66.85 68.28 70.11 64.42 66.52
OCT [31] 52.45 54.57 53.63 55.24 62.52 64.19 63.06 63.83 57.49 58.25
I3D + Regression [16] 48.26 52.26 58.03 59.73 63.03 64.89 67.55 68.83 61.80 62.98
Ours 47.32 51.33 47.53 51.02 58.89 61.28 59.83 62.30 53.16 55.68

Table 4. Input modality ablation study. Ablation study on the
input modalities on Ego4D and EPIC-Kitchens 55. We evaluate
intra and cross-dataset scenarios to verify the contribution of each
input modality to the hand forecasting performance and the ro-
bustness against novel scenes. In the intra-dataset scenario, we
use the same dataset for both training and evaluation. On the other
hand, the evaluation dataset is not used in training in the cross-
dataset scenario. We summarize the results of two scenarios, intra
or cross-dataset. The last column is the result of the proposed
method, which uses all the modal information.

Object RGB Flow Ego
Intra Cross

ADE # FDE # ADE # FDE #

X X X 48.76 53.79 52.78 57.02
X X X 50.08 54.83 53.30 57.54
X X X 51.00 54.78 54,74 57.93
X X X 48.35 53.24 52.89 57.02

X X X X 48.89 53.43 52.35 56.57

Table 5. Loss component ablation study. Ablation study on
ego-motion estimation loss on the two datasets in intra and cross-
dataset scenarios to verify the effectiveness of propagating ego-
motion estimation loss.

Method Intra Cross

ADE # FDE # ADE # FDE #

w/o Lego 49.66 54.26 52.84 57.08
w/ Lego (Ours) 48.89 53.43 52.35 56.57

dataset, where the models are trained on the EPIC-Kitchens
55 dataset.

Moreover, the learning-based approaches (OCT,
I3D+Regression, and Ours) demonstrate lower accuracy in
the cross-dataset scenario as compared to intra-dataset eval-
uations (see Fig. 3). This performance decrease stems from
dataset bias, as the two datasets originate from different
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Figure 3. The accuracy drop comparison. The figure summa-
rizes the accuracy drop percentage in the cross-dataset scenario
from the accuracy in the intra-dataset scenario for each method. A
lower value indicates that the performance does not drop by chang-
ing the scenario from intra-dataset to cross-dataset. We summarize
the performance drop of the learning-based model as there is no
performance degradation in non-learnable methods, such as CVM
and KF.

distributions (See Supp. A.1). The performance of I3D +
Regression drops significantly (21.1%) when the model is
trained on EPIC-Kitchens 55 and tested on Ego4D. On the
other hand, although the accuracy is dropped in our method
on Ego4D (9.6% dropping), the decrease is relatively
small compared to other learning-based methods, thereby
verifying the generalizability of the proposed method.
Action category-level evaluation. We conduct action
category-level evaluations in the cross-dataset scenario,
where the models are trained on EPIC-Kitchens 55 and
tested on each action category on Ego4D to assess the gen-
eralizability among unseen actions. We focus on five ma-
jor action categories on the Ego4D validation set: cooking,
mechanic, arts/crafts, building, and gardening/farming (See
Supp. A.1 for further details). Tab. 3 demonstrates that
our proposed method outperforms the prior learning-based



methods across all categories. This indicates that our pro-
posed method is highly generalizable to unseen action cat-
egories. In contrast, although the I3D + Regression method
performs well in the cooking category, which is included in
the training dataset, a significant performance gap can be
seen in other categories compared to the cooking category.
This occurs because I3D + Regression tends to overfit to the
context and background of the training data, particularly in
the cooking category.

4.6. Ablation Analysis
Input modality. The ablation study focuses on the input
modalities to verify the contribution of each input compo-
nent to the overall performance in intra/cross-dataset set-
tings. We experiment by removing each input modality:
bounding boxes of objects, RGB frame, optical flow, and
ego-motion information. As shown in Tab. 6, the absence
of visual or flow information degrades the performance by
2.4% (from 48.89 to 50.08) and 4.3% (from 48.89 to 51.00)
on intra-dataset evaluation on average, respectively.

Moreover, although the absence of object or ego-motion
information outperforms the proposed method on intra-
dataset evaluation (See Supp. B.1), these methods de-
grade the prediction performance on cross-dataset scenar-
ios. This performance deterioration on cross-dataset sce-
narios indicates that leveraging all input modalities (the pro-
posed method), including ego-motion information, is bene-
ficial for unseen scenes.
Loss. We also perform an ablation study on the loss func-
tion. We evaluate the advantage of the ego-motion esti-
mation loss term Lego in Eq. (9). Tab. 5 shows that train-
ing the proposed method without the ego-motion estima-
tion loss Lego deteriorates hand forecasting performance by
1.6% and 0.9% in terms of ADE in the intra/cross-dataset
scenario, respectively. This degradation verifies the effec-
tiveness of the proposed method, which forecasts the cam-
era wearer’s future ego-motion as an auxiliary task.

4.7. Qualitative Results
The qualitative results on the Ego4D and EPIC-Kitchens 55
datasets are visualized in Fig. 4. We present two sequences
from EPIC-Kitchens 55 in the top two rows of the figure
and two sequences from Ego4D in the bottom two rows. In
the second sequence from the top of EPIC-Kitchens, where
the camera wearer turns left, the proposed method predicts
the hand positions more accurately than the other methods.
This capability of prediction, even in the presence of ego-
motion, verifies the effectiveness of our ego-motion-aware
model.

5. Conclusion
Conclusion. We present EMAG, the first model to explore
the potential benefit of incorporating ego-motion into the
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Figure 4. Qualitative results. We present two sequences of pre-
dictions each from Ego4D and EPIC-Kitchens 55. Dots colored
in green, red, blue, and yellow represent the hand positions of the
ground truth, the proposed method, I3D + Regression, and OCT,
respectively.

hand forecasting task. We propose leveraging the homog-
raphy matrix to represent the camera wearer’s ego-motion
and to verify its effectiveness. Furthermore, our proposed
method utilizes multiple modalities to mitigate the suscep-
tibility to overfitting to backgrounds or scene textures. Ex-
periments on two large-scale egocentric datasets, Ego4D
and EPIC-Kitchens 55, demonstrate that our simple but ef-
fective approach outperforms the state-of-the-art hand fore-
casting methods in terms of accuracy and generalizability
against unseen scenes and actions.
Limitations and future work. Our proposed method
leverages the trajectory information of hands and objects
detected based on the off-the-shelf hand object detector [44]
from egocentric video. Thus, the bias and errors from the
off-the-shelf detector may still affect the input trajectory
information. In addition, the proposed method requires
multiple pre-processing modules, such as hand object
detection, optical flow estimation, and homography matrix
estimation. However, efficient and real-time inference capa-
bilities on edge devices are essential for forecasting in real-
world applications. We will leave this for our future efforts.
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