Keio University

Multimodal Cross-Domain Few-Shot Learning for Egocentric Action Recognition

Overview

- Address a novel challenging, but practical problem: CD-FSL with unlabeled target and multimodal input
- Propose MM-CDFSL, a novel approach for CDFSL for egocentric action recognition
- Achieve SOTA in both accuracy & inference cost

Problem Setup

Previous Related Problem Setup

- **G** Few-Shot
- MAML [ICML'17], ProtoNet [NeurIPS'17]
- **Cross-Domain Few-Shot**
- BS-CDFSL [ECCV'20]
- Cross-Domain Few-Shot w/ unlabeled target
 - STARTUP [ICLR'21], Dynamic Distill [NeurIPS'21], CDFSL-V [ICCV'23]

Meta-Training

(all *m* modalities) Source Dataset: D_S Unlabeled Target Dataset: $D_{T_{11}}$

Meta-Test (only *RGB*) Target Dataset: D_T Support Set: *S* (*N*-way *K*-shot) Query Set: Q (N classes)

Meta

Masashi Hatano¹ Ryo Hachiuma² Ryo Fujii¹ Hideo Saito¹ ¹Keio University

²NVIDIA

Experimental Results

Few-shot Accuracy & Inference Cost on EPIC, MECCANO, WEAR

Method	Runtime (ms)	GFLOPs	Memory (MiB)	1-shot		5-shot			
				EPIC	MEC	WEAR	EPIC	MEC	WEAR
Random Initialization VideoMAE [NeurIPS'22] STARTUP++ [ICLR'21] Dynamic Distill++ [NeurIPS'21] CDFSL V [ICCV'23]	22.1	68.5	2782	$\begin{array}{c} 29.20 \pm .37 \\ 35.07 \pm .41 \\ 35.18 \pm .43 \\ 36.96 \pm .43 \\ 38.17 \pm .44 \end{array}$	$\begin{array}{c} 23.10 \pm .24 \\ 27.75 \pm .31 \\ 26.84 \pm .30 \\ 27.87 \pm .30 \\ 26.03 \pm .20 \end{array}$	$\begin{array}{c} 25.96 \pm .27 \\ 44.65 \pm .38 \\ 39.15 \pm .35 \\ 35.84 \pm .32 \\ 39.11 \pm .25 \end{array}$	$\begin{array}{c} 40.28 \pm .42 \\ 47.13 \pm .43 \\ 50.24 \pm .45 \\ 53.78 \pm .47 \\ 53.72 \pm .01 \end{array}$	$27.04 \pm .28$ $35.92 \pm .33$ $34.05 \pm .31$ $37.87 \pm .33$ $35.64 \pm .22$	$38.71 \pm .36$ $63.92 \pm .35$ $59.88 \pm .36$ $56.23 \pm .35$ $58.27 \pm .26$
Ours	9.64	37.0	968	$41.97 \pm .46$	$28.34 \pm .30$	$51.25 \pm .40$	$58.70 \pm .90$	$37.80 \pm .46$	$69.57 \pm .37$

Accuracy vs. Inference Time

Limitations & Future Work

- Multimodal data for both source and target
 - Missing modality cases during training
- Eaually distilling multiple modalities
 - modality's relevance in the target domain

Domain Adaptability & Class-Discriminativeness

$\mathcal{L}_{ ext{recon}}^{ ext{source}}$	$\mathcal{L}_{\mathrm{recon}}^{\mathrm{target}}$	$\mathcal{L}^{\mathrm{source}}_{\mathrm{ce}}$	1-shot	5-shot
\checkmark	\checkmark		35.42	49.82
\checkmark		\checkmark	40.50	56.43
\checkmark	\checkmark	\checkmark	41.97	58.70

Multimodal Distillation

Method	1-shot	5-shot
Only RGB Training RGB+Pose	46.17 49.39 51 2 5	67.19 67.90 69 57

• Dynamical adjustment of distillation weights according to the