

EMAG: Ego-motion Aware and Generalizable 2D Hand Forecasting from Egocentric Videos

Masashi Hatano¹ Ryo Hachiuma² Hideo Saito¹ ¹Keio University ²NVIDIA

EUROPEAN CONFERENCE ON COMPUTER VISION

Overview

First work that investigates the potential benefits of incorporating ego-motion in egocentric 2D hand forecasting task > Propose simple but effective approach, EMAG Validated on Ego4D and EPIC-Kitchens in intra and cross-dataset scenarios

Proposed Method

Background

 Object 1 token Object 2 token RGB token Ego-motion token Ego learnable token 	 Left hand token Right hand token Flow token Hand learnable token

Experimental Results

Intra & Cross-Dataset Evaluation

Method	Ego4D -	$\rightarrow \text{Ego4D}$	EPIC -	$\rightarrow \text{EPIC}$	EPIC $-$	→ Ego4D	Ego4D	$\rightarrow \text{EPIC}$
	ADE \downarrow	FDE \downarrow	ADE \downarrow	FDE \downarrow	$ ADE\downarrow $	FDE \downarrow	ADE \downarrow	FDE \downarrow
CVM [1]	108.11	143.23	141.70	155.40	108.11	143.23	141.70	155.40
$\mathrm{KF}\left[2\right]$	71.23	72.87	70.58	75.60	71.23	72.87	70.58	75.60
Seq2Seq[3]	55.91	60.72	62.24	67.85	62.43	67.85	67.97	72.26
OCT [4]	49.40	54.73	53.85	59.06	57.74	59.10	64.97	65.84
I3D + Regression [5]	49.27	<u>53.04</u>	49.64	54.83	59.72	61.72	51.70	<u>58.37</u>
Ours	48.99	52.83	48.78	54.03	53.67	56.36	51.03	56.78

Issues

1. Ego-motion incorporation

- Take ego-motion as input ullet
- Forecasting future ego-motion \bullet

2. Generalization ability

Robustness to novel scene

Task Definition

Task: 2D Hand Forecasting Observation: 2s, Forecsting: 1s

 x_{p1} : frame 0.25s after the last observed frame x_{p2} : frame of 0.5s after x_{p3} : frame of 0.75s after x_{p4} : frame of 1s after

Predict hand location $(\widehat{h}_{i}^{l}, \widehat{h}_{i}^{r})$, where $i \in \{p1, p2, p3, p4\}$, on 2D image coordinate

Limitations & Future Work

ഹ

Qualitative Results

Object D	DOD		D	Int	Ira	Cross		
UDJECT KGB Flow Ege		Ego	$ADE \downarrow$	$FDE \downarrow$	ADE \downarrow	$FDE \downarrow$		
	\checkmark	\checkmark	\checkmark	48.76	53.79	52.78	57.02	
\checkmark		\checkmark	\checkmark	50.08	54.83	53.30	57.54	
\checkmark	\checkmark		\checkmark	51.00	54.78	$54,\!74$	57.93	
\checkmark	\checkmark	\checkmark		48.35	53.24	52.89	57.02	
\checkmark	\checkmark	\checkmark	\checkmark	48.89	53.43	52.35	56.57	

Input Ablation

Method	Int	tra	Cross		
	$\overline{ADE}\downarrow$	FDE \downarrow	ADE \downarrow	FDE ↓	
$ m w/o~\mathcal{L}_{ego}$	49.66	54.26	52.84	57.08	
${ m w}/~{\cal L}_{ m ego}~({ m Ours})$	48.89	53.43	52.35	56.57	

- Forecasting in 3D
- More interesting scenario where hands are out-of-view in several frames during observation

• GT

• Ours

References

- [1] Schöller et al, What the constant velocity model can teach us about pedestrian motion prediction, RA-L (2020)
- [2] Kalman et al, A new approach to linear filtering and prediction problems, Journal of Basic Engineering (1960)
- [3] Sutskever et al, Sequence to sequence learning with neural networks, NeurIPS (2014)
- [4] Liu et al, Joint Hand Motion and Interaction Hotspots Prediction from Egocentric Videos, CVPR(2022)
- [5] Grauman et al, Ego4D: Around the World in 3,000 Hours of Egocentric Video, CVPR(2022)
- Ego4I

OCT

• **I3D**